

NSA Overview

NAS/CSTB Study The Future of Supercomputing

George R. Cotter

AJgrcot@fggm.osis.gov

6 March 2003

Signals Intelligence

Mission Management Challenges

Targeting, Access, Selection & Filtering, Signal Processing (Text, Speech, Graphics, Video, Data), Analysis, Information Management and Dissemination, Security

Testing the Limits of Computation

Cryptanalysis

Natural Language Processing & Analysis

Data Management

Meeting the Needs of Federal Policy Makers in National Security, Homeland Security and Economic Security Matters but First in Support of the Nation's Warfighters

NSA's HEC Strategy

- Leverage HEC Vendors; Acquisitions, R&D
- Develop Strategic Partnerships
- Maintain Critical In-House Technical Mass
- Fund Leading Edge Technology Research
- Support Internal SPD Efforts
- Keep Strong Linkages Among R&D, Acquisition, User Communities
- Emphasize Usability & Programmability
- Keep a 0 − 20 Year Perspective; Never Give Up!

NSA's HEC R&D Program

HEC Architectures and Systems High Speed Switches and Interconnects Superconducting Electronics Thermal Management Programming Environments Quantum Information Sciences Vendor Partnerships

High Performance Interconnects

- Vendor-neutral Packet Router/Switch Interconnecting SMPs, MPPs
- High Speed/High Bandwidth I/O 3 Gbs
- Memory-Processor Optical Interconnect
- Partnership with ASCI PathForward Program

Superconducting Electronics

- Superconducting Crossbar
 - Proof of concept of 128x128 superconducting crossbar matrix
 - Demonstrated serial data rate of 10Gbs per port
- Superconducting Processor
 - Prototyped superconducting microprocessor FLUX-1 with 6700+ logic gates; 25 ghz => 60 ghz
- Subnanosecond Memory
 - Fabrication and test of subnanosecond memory hardware

The Pervasive Architectural Issue

Type T Systems*

Commodity Components, Sub-systems

Performance: Degrades with Scaling

Server Architectures (SMP)

4-128 Processors/Node

Relatively High Latency

Distributed Memories (Shared in Node)

Memory BW: Poorer

Programming Model: Usually MPI

Programmability: Harder

Vendors: IBM, HP, Sun, SGI

Type C Systems*

Highly Customized

Performance: Better Sustained

Various Architectures (MPP, PVP...)

8-128 Processors/Node

Accelerators: Vector, Multithreading Registers, Special Functions

Distributed, Shared Memories

Memory BW: Better

Programming Model: SSI; Shmem,

MPI

Programmability: Easier

Vendors: NEC, Fujitsu, Cray

CRAYX1

CRAY X1

- Multi-year Joint Development Effort in Scalable Vector Architecture with NSA/DDRE and Cray Inc.
- Technology Transfer NSA Developed Technology
 - e.g., Spray Cooling, MCM, UPC
- Aug-Sept '02: Beta models delivered
- Production Systems Shipped 31 Dec '02; 1000 Processor 4 Cabinet System in '03
- Broad User Participation in X1 Program Reviews
- Exceptional Congressional Funding-Follow on Systems in '02, '03
 - X1e Scalable to 50TF
 - Black Widow

X1 Programmer's View

- Traditional shared memory vector application
 - OpenMP, Pthreads
 - 4 MSPs (50 GFLOPS)
 - Single node memory (16-32 GB)
 - Very high memory bandwidth
- Distributed memory applications
 - MPI, shmem(), UPC, Co-array Fortran with Single System Image
 - Same kinds of optimizations as on microprocessor-based machines
 - work and data decomposition
 - cache blocking (higher BW in cache, MSP improves short VL)
 - But less worry about communication/computation ratio, memory stride and bandwidth
 - multiple GB/s network bandwidth between nodes
 - scatter/gather and large-stride support

Background

• Two Recent Studies Worth Citing:

- Congressional (HAC) Task to Develop an Integrated Long-range HEC R&D Plan for National Security Community
- Federal-wide NSTC Task Force to Study HEC
 R&D, Capabilities, Acquisitions

Background to HAC Task

- Cray-NEC Agreement
- Elimination of Tariffs
- Intensive Discussions with DoD Principals on National Security Implications
- Fragility of High End Leadership for US; Japanese Earth Sciences Machine

Japan's Earth Simulator

- US450M govt project
- 40 Tflop/s system
- Operational in 2002
- World's largest general purpose system
- driven by climate and earthquake simulation requirements
- built by NEC
- 640 CMOS 8 Processor vector nodes

Earth Simulator Building

NEC SX-6

Peak performance is 8 Gflop/s
per single-chip processor,
64 Gflop/s per node, and 8 Tflop/s
for the largest configuration.
Shared memory of up to 64 gigabytes per node,
memory bandwidth of up to 256 GB/sec/node,
I/O bandwidth of 6.4 GB/sec/node.

HAC Task on HEC R&D Program

- Multi-agency Study Resulted in Development and Acquisition Plan for HEC R&D Program
- Participants:
 - Executive panel: NSA, DUSD S&T, DoE
 - Agencies conducting R&D in HEC for national security applications: NSA, DARPA, NNSA, NASA
 - National Security users of HEC: NSA, NNSA, NASA, DoD High Performance Computing Modernization Program, ASD C3I, Naval Oceanographic (Fleet Numerical), NIMA, NRO, military high end computing laboratories
- Status: Study in DoD for Coordination, Funding

Do We Really Want World Leadership?

- '92 Joint DARPA/NSA Proposal PBD gave \$350M/yr to DARPA for HPC Program
- '95/96 DoD IPT; Recommended National Security HEC R&D Program, \$300-500M/yr
- '99 PITAC Recommended R&D Program with PetaFlop Goal
- '99/00 HEC WG Response; Joint Program Proposal; Exceptional Funding
- '02 Congressional Task; Long-Term Integrated HEC Program

IHEC Features

- Joint Program Office; DDRE Oversight
- Consolidate Existing DARPA, DOE/NNSA and NSA R&D Programs
 - Applied Research Component
 - Advanced Development (HPCS) Component
 - Engineering & Prototype Development
 Component
- Center(s) of Excellence

HEC Needs for National Security

- Comprehensive Aerospace Vehicle Design
- Operational Weather/Ocean Forecasting
- Stealthy Ship Design
- Nuclear Weapons Stockpile Stewardship
- Army Future Combat Systems
- Electromagnetic Weapons Development
- Intelligence Support
 - Imagery & Geospatial Intelligence
 - Signals Intelligence
 - Threat Weapons Systems Characterization

HAC Task — Users Needs Comprehensive Aerospace Vehicle Design

Modeling and Simulation

F18, F22, F35,V22

Hypersonic Vehicles

Hypersonic Weapons

Mach 4-8

Figure 4: Prediction of unsteady shock oscillation on the F/A-18E using DES.

External Airflow

Materials

Propulsor Performance

Signature

FNMOC

Operational Weather/Ocean Forecasting

Global, Regional, Tactical Atmospheric, Oceanographic, Wave, Ice, Tropical Cyclone

Pressing Need: 4D Coupled Air-Sea-Land Models; <9km Resolution for 0-14 Days and <1km Urban Areas

Planning, Exercise, Engagement Support – All Services

STRATCOM, Joint Forces Command

MDA, DTRA, LLNL for WMD

Backup to NWS

Stealthy Ship Design Modern Surface Combatant

Stealthy Ship Design

DD-X Land-attack Surface Combatant

6 DOF CFD "In Seaways" Models Simulating Turbulent Wakes, Steep Breaking Waves, Entrainment of Air, Generation of Spray Task is Signature Mitigation Submarine Levels of Stealth

Faster Running Models 20-30X for Design Tradeoffs

Nuclear Weapons Stockpile Stewardship

Develop/Validate High Quality Computational Physics Modeling & Simulation in Support of Stockpile Certification

Finite Element Models

Mechanical, Thermal, Shock Hydrodynamics, Crash Dynamics

Exceptional Requirements

2PF, 200TB Memory, 14 PB Storage, I/O: 1-2 Hour Dumps

Army Future Combat Systems Lethality & Survivability

Kinetic Energy Penetrators Multifunction Warheads Kinetic Energy Missiles

Modeling Radar Cross Section in the Presence of the Ground Plane

Modeling Complex Projectile-Target Interactions

Passive, Reactive Armor Advanced Hybrid Materials Low Observables (IR, Accoustics)

Modeling & Simulation is Absolutely Key to New Capabilities

Electromagnetic Weapons Development Airborne Laser for NMD

Chemical Lasers – Boost Phase Weapon

Modeling Laser Power & Gain (Optics)

Modeling Strength, Distribution, Spatial Spectrum of Stratospheric Turbulence

Limited Observational Data Operational M&S Support

A Critical Layer in U.S. Ballistic Missile Defense

Intelligence Imagery & Geospatial Intelligence

Multi-Sensors: EO, IR, SAR, Multispectral, Hyperspectral, Motion Video, GIS

Processing Challenges

Real-time, Huge Data Sets, Selection, Filtering, Conformal Integration

Support to Battlefield Management, Reconnaissance, Mission Planning, Tactical Situational Awareness, Targeting, BDA, and Technical Intelligence

Intelligence

Threat Weapons Systems Characterization

Critical to

National Warning System

Developing U.S. Weapon Response to Threat Systems

Battlefield Surveillance

National Missile Defense

Accurate Signatures

Missile Performance

Complete Flight Trajectories

Modeling & Simulation Critical, Access to Threats Seldom Available, Wind Tunnel, Signature and Field Measurements Prohibitive

HEC Improvements Needed

- Sustained Performance 4X-100X
- Interconnects (Processor, Memory, Board, Node)
- Larger, Global Shared Memories
- Scalable I/O
- Scalable, Balanced Architectures
- Processor Designs
- Improved Cooling
- Reduction in Power & Size
- Systems Software
- Programming Paradigms
- Ease of Use (Tools, Tools, Tools)
- Time to Solution

Summary

- · Capacity & Capability Issues Often Enmeshed
- It's Data and Computation, Dummy!
- System Cost is an Important Factor
- Increasing Concern on Industry Server Focus
- TF Bar has been Raised (NEC, Fujitsu, Cray)
- Sea Change in M&S; Past Physical Dimension
- Technology Futures a Major Concern
- Nat'l Security Sector HEC at Substantial Risk
- National Security R&D Program Essential

Lessons for HEC Managers

We Deserve What We Get, if We.....

- Live with Market-driven Architecture & Technologies
- Fail to Understand our User's Needs, Problems, Applications
- Accept Unbalanced Systems as State-of-the-Art
- Don't Really Understand Vendor Machines Strengths, Weaknesses
- Can't Parse "Price", "Price/Performance" and "Performance"
- Take Research & Development for Granted
- Do not Seek Opportunities for Collaborations
- Fail to Fight for HEC Budgets; R&D and Procurement

Popics for Further Discussion

- State of the Industry
- Foreign Competition
- Industrial Market
- IHEC Program
- Technology Futures
- Users Needs